Author:
Mintchev Mihail,Tonni Erik
Abstract
Abstract
We study the modular Hamiltonians of an interval for the massless Dirac fermion on the half-line. The most general boundary conditions ensuring the global energy conservation lead to consider two phases, where either the vector or the axial symmetry is preserved. In these two phases we derive the corresponding modular Hamiltonian in explicit form. Its density involves a bi-local term localised in two points of the interval, one conjugate to the other. The associated modular flows are also established. Depending on the phase, they mix fields with different chirality or charge that follow different modular trajectories. Accordingly, the modular flow preserves either the vector or the axial symmetry. We compute the two-point correlation functions along the modular flow and show that they satisfy the Kubo-Martin-Schwinger condition in both phases. The entanglement entropies are also derived.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献