Near-horizon geometries and black hole thermodynamics in higher-derivative AdS5 supergravity

Author:

Cano Pablo A.,David MarinaORCID

Abstract

Abstract Higher-derivative corrections in the AdS/CFT correspondence allow us to capture finer details of the dual CFT and to explore the holographic dictionary beyond the infinite N and strong coupling limits. Following an effective field theory approach, we investigate extremal AdS black hole solutions in five-dimensional supergravity with higher-derivative corrections. We provide a general analysis of near-horizon geometries of rotating extremal black holes and show how to obtain their corresponding charges and chemical potentials. We discuss the near-horizon solutions of the two-derivative theory, which we write using a novel parametrization that eases our computation of the higher-derivative corrections. The charges and thermodynamic properties of the black hole are computed while clarifying the ambiguities in their definitions. The charges and potentials turn out to satisfy a near-horizon version of the first law of thermodynamics whose interpretation we make clear. In the supersymmetric case, the results are shown to match the field theory prediction as well as previous results obtained from the on-shell action.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3