Confinement and moduli locking of Alice strings and monopoles

Author:

Nitta MunetoORCID

Abstract

Abstract We argue that strings (vortices) and monopoles are confined, when fields receiving nontrivial Aharonov-Bohm (AB) phases around a string develop vacuum expectation values (VEVs). We illustrate this in an SU(2)×U(1) gauge theory with charged triplet complex scalar fields admitting Alice strings and monopoles, by introducing charged doublet scalar fields receiving nontrivial AB phases around the Alice string. The Alice string carries a half U(1) magnetic flux and 1/4 SU(2) magnetic flux taking a value in two of the SU(2) generators characterizing the U(1) modulus. This string is not confined in the absence of a doublet VEV in the sense that the SU(2) magnetic flux can be detected at large distance by an AB phase around the string. When the doublet field develops VEVs, there appear two kinds of phases that we call deconfined and confined phases. When a single Alice string is present in the deconfined phase, the U(1) modulus of the string and the vacuum moduli are locked (the bulk-soliton moduli locking). In the confined phase, the Alice string is inevitably attached by a domain wall that we call an AB defect and is confined with an anti-Alice string or another Alice string with the same SU(2) flux. Depending on the partner, the pair annihilates or forms a stable doubly-wound Alice string having an SU(2) magnetic flux inside the core, whose color cannot be detected at large distance by AB phases, implying the “color” confinement. The theory also admits stable Abrikosov-Nielsen-Olesen string and a ℤ2 string in the absence of the doublet VEVs, and each decays into two Alice strings in the presence of the doublet VEVs. A monopole in this theory can be constructed as a closed Alice string with the U(1) modulus twisted once, and we show that with the doublet VEVs, monopoles are also confined to monopole mesons of the monopole charge two.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3