Study of η(1405)/η(1475) in $$ J/\psi \to \gamma {K}_S^0{K}_S^0{\pi}^0 $$ decay

Author:

,Ablikim M.,Achasov M. N.,Adlarson P.,Albrecht M.,Aliberti R.,Amoroso A.,An M. R.,An Q.,Bai X. H.,Bai Y.,Bakina O.,Baldini Ferroli R.,Balossino I.,Ban Y.,Batozskaya V.,Becker D.,Begzsuren K.,Berger N.,Bertani M.,Bettoni D.,Bianchi F.,Bloms J.,Bortone A.,Boyko I.,Briere R. A.,Brueggemann A.,Cai H.,Cai X.,Calcaterra A.,Cao G. F.,Cao N.,Cetin S. A.,Chang J. F.,Chang W. L.,Chelkov G.,Chen C.,Chen Chao,Chen G.,Chen H. S.,Chen M. L.,Chen S. J.,Chen S. M.,Chen T.,Chen X. R.,Chen X. T.,Chen Y. B.,Chen Z. J.,Cheng W. S.,Choi S. K.,Chu X.,Cibinetto G.,Cossio F.,Cui J. J.,Dai H. L.,Dai J. P.,Dbeyssi A.,de Boer R. E.,Dedovich D.,Deng Z. Y.,Denig A.,Denysenko I.,Destefanis M.,De Mori F.,Ding Y.,Dong J.,Dong L. Y.,Dong M. Y.,Dong X.,Du S. X.,Egorov P.,Fan Y. L.,Fang J.,Fang S. S.,Fang W. X.,Fang Y.,Farinelli R.,Fava L.,Feldbauer F.,Felici G.,Feng C. Q.,Feng J. H.,Fischer K,Fritsch M.,Fritzsch C.,Fu C. D.,Gao H.,Gao Y. N.,Gao Yang,Garbolino S.,Garzia I.,Ge P. T.,Ge Z. W.,Geng C.,Gersabeck E. M.,Gilman A,Goetzen K.,Gong L.,Gong W. X.,Gradl W.,Greco M.,Gu L. M.,Gu M. H.,Gu Y. T.,Guan C. Y,Guo A. Q.,Guo L. B.,Guo R. P.,Guo Y. P.,Guskov A.,Han T. T.,Han W. Y.,Hao X. Q.,Harris F. A.,He K. K.,He K. L.,Heinsius F. H.,Heinz C. H.,Heng Y. K.,Herold C.,Himmelreich M.,Hou G. Y.,Hou Y. R.,Hou Z. L.,Hu H. M.,Hu J. F.,Hu T.,Hu Y.,Huang G. S.,Huang K. X.,Huang L. Q.,Huang L. Q.,Huang X. T.,Huang Y. P.,Huang Z.,Hussain T.,Hüsken N,Imoehl W.,Irshad M.,Jackson J.,Jaeger S.,Janchiv S.,Jang E.,Jeong J. H.,Ji Q.,Ji Q. P.,Ji X. B.,Ji X. L.,Ji Y. Y.,Jia Z. K.,Jiang H. B.,Jiang S. S.,Jiang X. S.,Jiang Y.,Jiang Yi,Jiao J. B.,Jiao Z.,Jin S.,Jin Y.,Jing M. Q.,Johansson T.,Kalantar-Nayestanaki N.,Kang X. S.,Kappert R.,Ke B. C.,Keshk I. K.,Khoukaz A.,Kiuchi R.,Kliemt R.,Koch L.,Kolcu O. B.,Kopf B.,Kuemmel M.,Kuessner M.,Kupsc A.,Kühn W.,Lane J. J.,Lange J. S.,Larin P.,Lavania A.,Lavezzi L.,Lei Z. H.,Leithoff H.,Lellmann M.,Lenz T.,Li C.,Li C.,Li C. H.,Li Cheng,Li D. M.,Li F.,Li G.,Li H.,Li H.,Li H. B.,Li H. J.,Li H. N.,Li J. Q.,Li J. S.,Li J. W.,Li Ke,Li L. J,Li L. K.,Li Lei,Li M. H.,Li P. R.,Li S. X.,Li S. Y.,Li T.,Li W. D.,Li W. G.,Li X. H.,Li X. L.,Li Xiaoyu,Li Z. X.,Liang H.,Liang H.,Liang H.,Liang Y. F.,Liang Y. T.,Liao G. R.,Liao L. Z.,Libby J.,Limphirat A.,Lin C. X.,Lin D. X.,Lin T.,Liu B. J.,Liu C. X.,Liu D.,Liu F. H.,Liu Fang,Liu Feng,Liu G. M.,Liu H.,Liu H. B.,Liu H. M.,Liu Huanhuan,Liu Huihui,Liu J. B.,Liu J. L.,Liu J. Y.,Liu K.,Liu K. Y.,Liu Ke,Liu L.,Liu Lu,Liu M. H.,Liu P. L.,Liu Q.,Liu S. B.,Liu T.,Liu W. K.,Liu W. M.,Liu X.,Liu Y.,Liu Y. B.,Liu Z. A.,Liu Z. Q.,Lou X. C.,Lu F. X.,Lu H. J.,Lu J. G.,Lu X. L.,Lu Y.,Lu Y. P.,Lu Z. H.,Luo C. L.,Luo M. X.,Luo T.,Luo X. L.,Lyu X. R.,Lyu Y. F.,Ma F. C.,Ma H. L.,Ma L. L.,Ma M. M.,Ma Q. M.,Ma R. Q.,Ma R. T.,Ma X. Y.,Ma Y.,Maas F. E.,Maggiora M.,Maldaner S.,Malde S.,Malik Q. A.,Mangoni A.,Mao Y. J.,Mao Z. P.,Marcello S.,Meng Z. X.,Mezzadri G.,Miao H.,Min T. J.,Mitchell R. E.,Mo X. H.,Muchnoi N. Yu.,Nefedov Y.,Nerling F.,Nikolaev I. B.,Ning Z.,Nisar S.,Niu Y.,Olsen S. L.,Ouyang Q.,Pacetti S.,Pan X.,Pan Y.,Pathak A.,Pelizaeus M.,Peng H. P.,Peters K.,Ping J. L.,Ping R. G.,Plura S.,Pogodin S.,Prasad V.,Qi F. Z.,Qi H.,Qi H. R.,Qi M.,Qi T. Y.,Qian S.,Qian W. B.,Qian Z.,Qiao C. F.,Qin J. J.,Qin L. Q.,Qin X. P.,Qin X. S.,Qin Z. H.,Qiu J. F.,Qu S. Q.,Rashid K. H.,Redmer C. F.,Ren K. J.,Rivetti A.,Rodin V.,Rolo M.,Rong G.,Rosner Ch.,Ruan S. N.,Sang H. S.,Sarantsev A.,Schelhaas Y.,Schnier C.,Schoenning K.,Scodeggio M.,Shan K. Y.,Shan W.,Shan X. Y.,Shangguan J. F.,Shao L. G.,Shao M.,Shen C. P.,Shen H. F.,Shen X. Y.,Shi B. A.,Shi H. C.,Shi J. Y.,Shi Q. Q.,Shi R. S.,Shi X.,Shi X. D,Song J. J.,Song W. M.,Song Y. X.,Sosio S.,Spataro S.,Stieler F.,Su K. X.,Su P. P.,Su Y. J.,Sun G. X.,Sun H.,Sun H. K.,Sun J. F.,Sun L.,Sun S. S.,Sun T.,Sun W. Y.,Sun X,Sun Y. J.,Sun Y. Z.,Sun Z. T.,Tan Y. H.,Tan Y. X.,Tang C. J.,Tang G. Y.,Tang J.,Tao L. Y,Tao Q. T.,Tat M.,Teng J. X.,Thoren V.,Tian W. H.,Tian Y.,Uman I.,Wang B.,Wang B. L.,Wang C. W.,Wang D. Y.,Wang F.,Wang H. J.,Wang H. P.,Wang K.,Wang L. L.,Wang M.,Wang M. Z.,Wang Meng,Wang S.,Wang S.,Wang T.,Wang T. J.,Wang W.,Wang W. H.,Wang W. P.,Wang X.,Wang X. F.,Wang X. L.,Wang Y.,Wang Y. D.,Wang Y. F.,Wang Y. H.,Wang Y. Q.,Wang Yaqian,Wang Z.,Wang Z. Y.,Wang Ziyi,Wei D. H.,Weidner F.,Wen S. P.,White D. J.,Wiedner U.,Wilkinson G.,Wolke M.,Wollenberg L.,Wu J. F.,Wu L. H.,Wu L. J.,Wu X.,Wu X. H.,Wu Y.,Wu Z.,Xia L.,Xiang T.,Xiao D.,Xiao G. Y.,Xiao H.,Xiao S. Y.,Xiao Y. L.,Xiao Z. J.,Xie C.,Xie X. H.,Xie Y.,Xie Y. G.,Xie Y. H.,Xie Z. P.,Xing T. Y.,Xu C. F.,Xu C. J.,Xu G. F.,Xu H. Y.,Xu Q. J.,Xu X. P.,Xu Y. C.,Xu Z. P.,Yan F.,Yan L.,Yan W. B.,Yan W. C.,Yang H. J.,Yang H. L.,Yang H. X.,Yang L.,Yang S. L.,Yang Tao,Yang Y. F.,Yang Y. X.,Yang Yifan,Ye M.,Ye M. H.,Yin J. H.,You Z. Y.,Yu B. X.,Yu C. X.,Yu G.,Yu T.,Yu X. D.,Yuan C. Z.,Yuan L.,Yuan S. C.,Yuan X. Q.,Yuan Y.,Yuan Z. Y.,Yue C. X.,Zafar A. A.,Zeng F. R.,Zeng X.,Zeng Y.,Zhan Y. H.,Zhang A. Q.,Zhang B. L.,Zhang B. X.,Zhang D. H.,Zhang G. Y.,Zhang H.,Zhang H. H.,Zhang H. H.,Zhang H. Y.,Zhang J. L.,Zhang J. Q.,Zhang J. W.,Zhang J. X.,Zhang J. Y.,Zhang J. Z.,Zhang Jianyu,Zhang Jiawei,Zhang L. M.,Zhang L. Q.,Zhang Lei,Zhang P.,Zhang Q. Y.,Zhang Shuihan,Zhang Shulei,Zhang X. D.,Zhang X. M.,Zhang X. Y.,Zhang X. Y.,Zhang Y.,Zhang Y. T.,Zhang Y. H.,Zhang Yan,Zhang Yao,Zhang Z. H.,Zhang Z. Y.,Zhang Z. Y.,Zhao G.,Zhao J.,Zhao J. Y.,Zhao J. Z.,Zhao Lei,Zhao Ling,Zhao M. G.,Zhao Q.,Zhao S. J.,Zhao Y. B.,Zhao Y. X.,Zhao Z. G.,Zhemchugov A.,Zheng B.,Zheng J. P.,Zheng Y. H.,Zhong B.,Zhong C.,Zhong X.,Zhou H.,Zhou L. P.,Zhou X.,Zhou X. K.,Zhou X. R.,Zhou X. Y.,Zhou Y. Z.,Zhu J.,Zhu K.,Zhu K. J.,Zhu L. X.,Zhu S. H.,Zhu S. Q.,Zhu T. J.,Zhu W. J.,Zhu Y. C.,Zhu Z. A.,Zou B. S.,Zou J. H.

Abstract

Abstract Using a sample of (10.09 ± 0.04) × 109J/ψ decays collected with the BESIII detector, partial wave analyses of the decay $$ J/\psi \to \gamma {K}_S^0{K}_S^0{\pi}^0 $$ J / ψ γ K S 0 K S 0 π 0 are performed within the $$ {K}_S^0{K}_S^0{\pi}^0 $$ K S 0 K S 0 π 0 invariant mass region below 1.6 GeV/c2. The covariant tensor amplitude method is used in both mass independent and mass dependent approaches. Both analysis approaches exhibit dominant pseudoscalar and axial vector components, and show good consistency for the other individual components. Furthermore, the mass dependent analysis reveals that the $$ {K}_S^0{K}_S^0{\pi}^0 $$ K S 0 K S 0 π 0 invariant mass spectrum for the pseudoscalar component can be well described with two isoscalar resonant states using relativistic Breit-Wigner model, i.e., the η(1405) with a mass of $$ 1391.7\pm {0.7}_{-0.3}^{+11.3} $$ 1391.7 ± 0.7 0.3 + 11.3 MeV/c2 and a width of $$ 60.8\pm {1.2}_{-12.0}^{+5.5} $$ 60.8 ± 1.2 12.0 + 5.5 MeV, and the η(1475) with a mass of $$ 1507.6\pm {1.6}_{-32.2}^{+15.5} $$ 1507.6 ± 1.6 32.2 + 15.5 MeV/c2 and a width of $$ 115.8\pm {2.4}_{-10.9}^{+14.8} $$ 115.8 ± 2.4 10.9 + 14.8 MeV. The first and second uncertainties are statistical and systematic, respectively. Alternate models for the pseudoscalar component are also tested, but the description of the $$ {K}_S^0{K}_S^0{\pi}^0 $$ K S 0 K S 0 π 0 invariant mass spectrum deteriorates significantly.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference56 articles.

1. D.L. Scharre et al., Observation of the radiative transition ψ → γE(1420), Phys. Lett. B 97 (1980) 329 [INSPIRE].

2. C. Edwards et al., Observation of a pseudoscalar state at 1440 MeV in J/ψ radiative decays, Phys. Rev. Lett. 49 (1982) 259 [Erratum ibid. 50 (1983) 219] [INSPIRE].

3. A. Birman et al., Partial wave analysis of the $$ K+\overline{K}0{\pi}^{-} $$ system, Phys. Rev. Lett. 61 (1988) 1557 [Erratum ibid. 62 (1989) 1577] [INSPIRE].

4. OBELIX collaboration, E/ι decays to $$ K\overline{K}\pi $$ in $$ \overline{p}p $$ annihilation at rest, Phys. Lett. B 361 (1995) 187 [INSPIRE].

5. OBELIX collaboration, Evidence for two pseudoscalar states in the 1.4 GeV to 1.5 GeV mass region, Phys. Lett. B 462 (1999) 453 [INSPIRE].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3