Author:
Ammon Martin,Areán Daniel,Baggioli Matteo,Gray Seán,Grieninger Sebastian
Abstract
Abstract
We investigate the low-energy dynamics of systems with pseudo-spontaneously broken U(1) symmetry and Goldstone phase relaxation. We construct a hydrodynamic framework which is able to capture these, in principle independent, effects. We consider two generalisations of the standard holographic superfluid model by adding an explicit breaking of the U(1) symmetry by either sourcing the charged bulk scalar or by introducing an explicit mass term for the bulk gauge field. We find agreement between the hydrodynamic dispersion relations and the quasi-normal modes of both holographic models. We verify that phase relaxation arises only due to the breaking of the inherent Goldstone shift symmetry. The interplay of a weak explicit breaking of the U(1) and phase relaxation renders the DC electric conductivity finite but does not result in a Drude-like peak. In this scenario we show the validity of a universal relation, found in the context of translational symmetry breaking, between the phase relaxation rate, the mass of the pseudo-Goldstone and the Goldstone diffusivity.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献