Abstract
Abstract
We investigate chaotic dynamics in tree-level S-matrices describing the scattering of tachyons, photons and gravitons on highly excited open and closed bosonic strings, motivated by the string/black hole complementarity. The eigenphase spacing distribution and other indicators of quantum chaotic scattering suggest that the dynamics is only weakly chaotic, consisting of both regular/Poisson and chaotic/Wigner-Dyson processes. Only for special values of momenta and (for photon scattering) scattering angles do we find strong chaos of random matrix type. These special values correspond to a crossover between two regimes of scattering, dominated by short versus long partitions of the total occupation number of the highly excited string; they also maximize the information entropy of the S-matrix. The lack of strong chaos suggests that perturbative dynamics of highly excited strings can never describe the universal properties and maximal chaos of black hole horizons.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献