Neutrino portal to FIMP dark matter with an early matter era

Author:

Cosme Catarina,Dutra Maíra,Ma Teng,Wu Yongcheng,Yang Litao

Abstract

Abstract We study the freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter candidates through a neutrino portal. We consider a hidden sector comprised of a fermion and a complex scalar, with the lightest one regarded as a FIMP candidate. We implement the Type-I Seesaw mechanism for generating the masses of the Standard Model (SM) neutrinos by introducing three heavy neutrinos which are assumed to be degenerated, for simplicity, and are also responsible for mediating the interactions be- tween the hidden and the SM sectors. We assume that an early matter-dominated (EMD) era took place for some period between inflation and Big Bang Nucleosynthesis, making the Universe to expand faster than in the standard radiation-dominated era. In this case, the hidden and SM sectors are easily decoupled and larger couplings between FIMPs and SM particles are needed from the relic density constraints. In this context, we discuss the dynamics of dark matter throughout the modified cosmic history, evaluate the relevant constraints of the model and discuss the consequences of the duration of the EMD era for the dark matter production. Finally, we show that if the heavy neutrinos are not part of the thermal bath, this scenario becomes testable through indirect detection searches.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference121 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational wave as a probe of light feebly interacting dark matter;Physical Review D;2024-07-19

2. Feebly interacting dark matter;The European Physical Journal Special Topics;2024-03-12

3. Unitarity bound on dark matter in low-temperature reheating scenarios;Physical Review D;2024-02-23

4. Freeze-in of WIMP dark matter;Physical Review D;2023-09-29

5. From WIMPs to FIMPs with low reheating temperatures;Journal of Cosmology and Astroparticle Physics;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3