Abstract
Abstract
There has recently been a strong revival of interest in quasi-extremal magnetically charged black holes. In the asymptotically flat case, it is possible to choose the magnetic charge of such an object in such a manner that the black hole is surrounded by a corona in which electroweak symmetry is restored on macroscopic scales, a result of very considerable interest. We argue that holographic duality indicates that the asymptotically AdS analogues of these black holes have several interesting properties: the dual theory is only physical if the black hole is required to rotate; in the rotating case, the magnetic field at the poles does not attain its maximum on the event horizon, but rather somewhat outside it; the magnetic field at the equator is not a monotonically decreasing function of the magnetic charge; the electric fields induced by the rotation, while smaller than their magnetic counterparts, are by no means negligible; the maximal electric field often occurs neither at the poles nor at the equator; and so on. Most importantly, in the magnetically charged case it is possible to avoid the superradiant instability to which neutral AdS-Kerr black holes are subject; but the need to avoid this instability imposes upper bounds on the magnetic and electric fields. In some circumstances, therefore, the corona may not exist in the asymptotically AdS case.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献