Causality, unitarity, and the weak gravity conjecture

Author:

Arkani-Hamed Nima,Huang Yu-tin,Liu Jin-Yu,Remmen Grant N.ORCID

Abstract

Abstract We consider the shift of charge-to-mass ratio for extremal black holes in the context of effective field theory, motivated by the Weak Gravity Conjecture. We constrain extremality corrections in different regimes subject to unitarity and causality constraints. In the asymptotic IR, we demonstrate that for any supersymmetric theory in flat space, and for all minimally coupled theories, logarithmic running at one loop pushes the Wilson coefficient of certain four-derivative operators to be larger at lower energies, guaranteeing the existence of sufficiently large black holes with Q > M. We identify two exceptional cases of nonsupersymmetric theories involving large numbers of light states and Planck-scale nonminimal couplings, in which the sign of the running is reversed, leading to black holes with negative corrections to Q/M in the deep IR, but argue that these do not rule out extremal black holes as the requisite charged states for the WGC. We separately show that causality and unitarity imply that the leading threshold corrections to the effective action from integrating out massive states, in any weakly coupled theory, can be written as a sum of squares and is manifestly positive for black hole backgrounds. Quite beautifully, the shift in the extremal Q/M ratio is directly proportional to the shift in the on-shell action, guaranteeing that these threshold corrections push Q > M in compliance with the WGC. Our results apply for black holes with or without dilatonic coupling and charged under any number of U(1)s.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3