Author:
Di Bari Pasquale,Murphy Adam
Abstract
Abstract
The right-handed (RH) Higgs-induced neutrino mixing (RHINO) model explains neutrino masses and origin of matter in the universe within a unified picture. The mixing, effectively described by a dimension five operator, is responsible both for the production of dark neutrinos, converting a small fraction of seesaw neutrinos acting as source, and for their decays. We show that including the production of source neutrinos from Higgs portal interactions, their abundance can thermalise prior to the onset of source-dark neutrino oscillations, resulting into an enhanced production of dark neutrinos that thus can play the role of decaying dark matter (DM) for a much higher seesaw scale. This can be above the sphaleron freeze-out temperature and as high as ~ 100 TeV, so that strong thermal resonant leptogenesis for the generation of the matter-antimatter asymmetry is viable. We obtain a ~ 1 TeV–1 PeV allowed dark neutrino mass range. Intriguingly, their decays can also explain a neutrino flux excess at $$ \mathcal{O} $$
O
(100 TeV) energies recently confirmed by the IceCube collaboration analysing 7.5 yr HESE data. Our results also point to an effective scale for Higgs portal interactions nicely identifiable with the grandunified scale and many orders of magnitude below the effective scale for the mixing. We explain this hierarchy in a UV-complete model with a very heavy fermion as mediator: the first scale corresponds to the fundamental scale of new physics, while the second is much higher because of a very small coupling that can be identified with a symmetry breaking parameter. Therefore, RHINO realises a simple unified model of neutrino masses and origin of matter in the universe currently under scrutiny at neutrino telescopes and potentially embeddable within a grandunified model.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference51 articles.
1. P. Di Bari, On the origin of matter in the Universe, Prog. Part. Nucl. Phys. 122 (2022) 103913 [arXiv:2107.13750] [INSPIRE].
2. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
3. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
4. P. Ramond, The Family Group in Grand Unified Theories, in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory, Palm Coast, U.S.A. (1979), CALT-68-709 [hep-ph/9809459] [INSPIRE].
5. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].