Author:
Losada Marta,Nir Yosef,Perez Gilad,Savoray Inbar,Shpilman Yogev
Abstract
Abstract
If Ultra-light dark matter (ULDM) exists and couples to neutrinos, the neutrino oscillation probability might be significantly altered by a parametric resonance. This resonance can occur if the typical frequency of neutrino flavor-oscillations ∆m2/(2E), where ∆m2 is the mass-squared difference of the neutrinos and E is the neutrino energy, matches the oscillation frequency of the ULDM field, determined by its mass, mϕ. The resonance could lead to observable effects even if the ULDM coupling is very small, and even if its typical oscillation period, given by τϕ = 2π/mϕ, is much shorter than the experimental temporal resolution. Defining a small parameter ϵϕ to be the ratio between the contribution of the ULDM field to the neutrino mass and the vacuum value of the neutrino mass, the impact of the resonance is particularly significant if ϵϕmϕL ≳ 4, where L is the distance between the neutrino source and the detector. An outlier in the data collected by the KamLAND experiment which, until now, has been assumed to constitute a statistical fluctuation, or associated with the binning, can actually be explained by such narrow parametric resonance, without affecting the measurements of other current neutrino oscillation experiments. This scenario will be tested by the JUNO experiment.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献