Abstract
Abstract
To explore the interplay of NLO matching and next-to-leading logarithmic (NLL) parton showers, we consider the simplest case of γ* and Higgs-boson decays to $$ q\overline{q} $$
q
q
¯
and gg respectively. Not only should shower NLL accuracy be retained across observables after matching, but for global event-shape observables and the two-jet rate, matching can augment the shower in such a way that it additionally achieves next-to-next-to-double-logarithmic (NNDL) accuracy, a first step on the route towards general NNLL. As a proof-of-concept exploration of this question, we consider direct application of multiplicative matrix-element corrections, as well as simple implementations of MC@NLO and POWHEG-style matching. We find that the first two straightforwardly bring NNDL accuracy, and that this can also be achieved with POWHEG, although particular care is needed in the handover between POWHEG and the shower. Our study involves both analytic and numerical components and we also touch on some phenomenological considerations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献