Circular Wilson loops in defect $$ \mathcal{N} $$ = 4 SYM: phase transitions, double-scaling limits and OPE expansions

Author:

Bonansea Sara,Davoli Silvia,Griguolo Luca,Seminara Domenico

Abstract

Abstract We consider circular Wilson loops in a defect version of $$ \mathcal{N} $$ N = 4 super-Yang- Mills theory which is dual to the D3-D5 brane system with k units of flux. When the loops are parallel to the defect, we can construct both BPS and non-BPS operators, depending on the orientation of the scalar couplings in the R-symmetry directions. At strong ’t Hooft coupling we observe, in the non supersymmetric case, a Gross-Ooguri-like phase transition in the dual gravitational theory: the familiar disk solution dominates, as expected, when the operator is far from the defect while a cylindrical string worldsheet, connecting the boundary loop with the probe D5-brane, is favourite below a certain distance (or equivalently for large radii of the circles). In the BPS case, instead, the cylindrical solution does not exist for any choice of the physical parameters, suggesting that the exchange of light supergravity modes always saturate the expectation value at strong coupling. We study the double-scaling limit for large k and large ’t Hooft coupling, finding full consistency in the non-BPS case between the string solution and the one-loop perturbative result. Finally we discuss, in the BPS case, the failure of the double-scaling limit and the OPE expansion of the Wilson loop, finding consistency with the known results for the one-point functions of scalar composite operators.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Volume complexity for the nonsupersymmetric Janus AdS5 geometry;Physical Review D;2021-10-27

2. Wilson loops correlators in defect N=4 SYM;Physical Review D;2021-02-25

3. Wilson lines in AdS/dCFT;Physics Letters B;2020-07

4. A quantum framework for AdS/dCFT through fuzzy spherical harmonics on S4;Journal of High Energy Physics;2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3