Evaluation of a Machine Learning-Based Dysphagia Prediction Tool in Clinical Routine: A Prospective Observational Cohort Study

Author:

Jauk Stefanie,Kramer Diether,Veeranki Sai Pavan Kumar,Siml-Fraissler Angelika,Lenz-Waldbauer Angelika,Tax Ewald,Leodolter Werner,Gugatschka MarkusORCID

Abstract

AbstractBased on a large number of pre-existing documented electronic health records (EHR), we developed a machine learning (ML) algorithm for detection of dysphagia and aspiration pneumonia. The aim of our study was to prospectively apply this algorithm in two large patient cohorts. The tool was integrated in the hospital information system of a secondary care hospital in Austria. Based on existing data such as diagnoses, laboratory, and medication, dysphagia risk was predicted automatically, and patients were stratified into three risk groups. Patients’ risk groups and risk factors were visualized in a web application. Prospective predictions of 1270 admissions to geriatric or internal medicine departments were compared with the occurrence of dysphagia or aspiration pneumonia of routinely documented events. The discriminative performance for internal medicine patients (n = 885) was excellent with an AUROC of 0.841, a sensitivity of 74.2%, and a specificity of 84.1%. For the smaller geriatric cohort (n = 221), the AUROC was 0.758, sensitivity 44.4%, and specificity 93.0%. For both cohorts, calibration plots showed a slight overestimation of the risk. This is the first study to evaluate the performance of a ML-based prediction tool for dysphagia in a prospective clinical setting. Future studies should validate the predictions on data of systematic dysphagia screening by specialists and evaluate user satisfaction and acceptance. The ML-based dysphagia prediction tool achieved an excellent performance in the internal medicine cohort. More data are needed to determine the performance in geriatric patients.

Funder

Medical University of Graz

Publisher

Springer Science and Business Media LLC

Subject

Speech and Hearing,Gastroenterology,Otorhinolaryngology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3