Quality over quantity? The role of data quality and uncertainty for AI in surgery

Author:

Jogan MatjažORCID,Kurada Sruthi,Vasisht Shubha,Singh Vivek,Hashimoto Daniel A.

Abstract

AbstractSurgical Data Science is an emerging scientific discipline that applies advances in data science, machine learning and AI to harness the increasingly large amounts of surgical data to enable AI in surgery [1–4]. Data collection for AI solutions involves both ingestion of contingent data (in case of surgery—medical records, case data, instrument data, medical images, data from OR sensors and surgical video), as well as intentionally collected annotations and expert opinion describing the data. This organized knowledge is then used to train AI models that ultimately generate predictions based on the available training data. Historically, the data science workflow starts with organizing a clean and consistent dataset, with the mantra GIGO—garbage in, garbage out—emphasizing that the quality of the model output is directly related to the quality of data. In surgery, as in healthcare in general, this is not an easy goal to achieve due to the complex logistics of data collection, missing and incomplete data, human error, the lack of measurement standards, as well as subjective differences in data interpretation. In this article, we look at surgical AI from this particular perspective of data quality and uncertainty. We highlight a few topics of which hospitals, surgeons and research teams need to be aware when collecting data for AI that will provide actionable outputs in clinical and educational settings.

Funder

Thomas B. McCabe and Mrs. Jeannette E. Law McCabe Fellows Award

Publisher

Springer Science and Business Media LLC

Reference59 articles.

1. Maier-Hein L, Vedula S, Speidel S, Navab N, Kikinis R,Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S,Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P. Surgical data science: enabling next-generation surgery. 2017. arXiv:1701.06482 [cs.CY].

2. Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1(9):691–6.

3. Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, Arbel T, Bogunovic H, Bradley AP, Carass A, Feldmann C, Frangi AF, Full PM, Ginneken B, Hanbury A, Honauer K, Kozubek M, Landman BA, März K, Maier O, Maier-Hein K, Menze BH, Müller H, Neher PF, Niessen W, Rajpoot N, Sharp GC, Sirinukunwattana K, Speidel S, Stock C, Stoyanov D, Taha AA, Sommen F, Wang C-W, Weber M-A, Zheng G, Jannin P, Kopp-Schneider A. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun. 2018;9(1):5217.

4. Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P, Nakawala H, Park A, Pugh C, Stoyanov D, Vedula SS, Cleary K, Fichtinger G, Forestier G, Gibaud B, Grantcharov T, Hashizume M, Heckmann-Nötzel D, Kenngott HG, Kikinis R, Mündermann L, Navab N, Onogur S, Roß T, Sznitman R, Taylor RH, Tizabi MD, Wagner M, Hager GD, Neumuth T, Padoy N, Collins J, Gockel I, Goedeke J, Hashimoto DA, Joyeux L, Lam K, Leff DR, Madani A, Marcus HJ, Meireles O, Seitel A, Teber D, Ückert F, Müller-Stich BP, Jannin P, Speidel S. Surgical data science—from concepts toward clinical translation. Med Image Anal. 2022;76:102306.

5. Zha D, Bhat Z.P, Lai K.-H, Yang F, Jiang Z, Zhong S, Hu X. Data-centric artificial intelligence: a survey. 2023. arXiv:2303.10158 [cs.LG].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3