Abstract
AbstractSerotonin (5-HT) is one of the principal neurotransmitters in the nervous system of vertebrates. It is initially synthesized by hydroxylation of tryptophan (Trp) by means of tryptophan hydroxylase or TPH which is the rate-limiting enzyme in the production of 5-HT. In most vertebrates, there are two isoforms of TPH present, TPH1 and TPH2, which exhibit different catalytic or substrate specificity as well as different expression domains. Studies carried out in mammals show that only tph2 is expressed in the brain whereas tph1-mRNA is primarily localized in the enterochromaffin cells and pineal gland. A large number of neurons are also considered to be serotonergic or “pseudo-serotonergic” as they accumulate and release 5-HT yet do not produce it as no amine-synthetic enzymes are expressed, yet a combination of 5-HT transporters is observed. Therefore, tph expression is considered to be the only specific marker of 5-HT-producing neurons that can discriminate true 5-HT from pseudo-serotonergic neurons. This work examined in situ hybridization to study the mRNA distribution of one paralogue for tph1 and tph2 in the central nervous system of rainbow trout. Results show a segregated expression for both paralogues that predominantly match previous immunocytochemical studies. This study thus adds valuable information to the scarce analyses focusing on the central distribution of the expression of serotonergic markers, particularly tphs, in the vertebrate brain thus characterizing the true serotonergic brain territories.
Funder
Agencia Estatal de Investigación
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Subject
Histology,General Neuroscience,Anatomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献