Author:
Jannesari Mostafa,Saeedi Alireza,Zare Marzieh,Ortiz-Mantilla Silvia,Plenz Dietmar,Benasich April A.
Abstract
AbstractDuring infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single-electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex, maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory odd-ball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Publisher
Springer Science and Business Media LLC
Subject
Histology,General Neuroscience,Anatomy
Reference72 articles.
1. Allegrini P, Paradisi P, Menicucci D, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front Physiol 1(128):1–9
2. Arviv O, Medvedovsky M, Sheintuch L, Goldstein A, Shriki O (2016) Deviations from critical dynamics in interictal epileptiform activity. J Neurosci 36(48):12276–12292
3. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177
4. Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Physiol 3(163):1–14
5. Benasich AA, Choudhury N (2012) Timing, information processing and efficacy: early factors that impact childhood language trajectories. In: Benasich AA, Fitch RH (eds) Developmental dyslexia: early precursors, neurobehavioral markers and biological substrates. Brookes Publishing, Baltimore
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献