Additional fiber orientations in the sagittal stratum—noise or anatomical fine structure?

Author:

Caspers Svenja,Axer Markus,Gräßel David,Amunts Katrin

Abstract

AbstractThe sagittal stratum is a prominent and macroscopically clearly visible white-matter structure within occipital and parietal lobes with a highly organized structure of parallel fibers running in rostro-caudal direction. Apart from the major tract running through, i.e., the optic radiation, the source and arrangement of other fibers within the sagittal stratum is only partially understood. Recent diffusion imaging studies in-vivo suggest additional minor fiber directions, perpendicular to the major rostro-caudal ones, but the spatial resolution does not allow to resolve them, and to unambiguously distinguish it from noise. Taking this previous evidence as motivation, the present study used 3D polarized light imaging (3D-PLI) for micrometer resolution analysis of nerve fibers in postmortem specimens of a vervet monkey brain. The analysis of coronal occipital and parietal sections revealed that the sagittal stratum consisted of an external and an internal layer, which are joined and crossed by fibers from the surrounding white matter and the tapetum. Fibers from different parietal and occipital regions entered the sagittal stratum in the dorsal, ventral or middle sector, as solid large bundles or as several small fiber aggregations. These patterns were remarkably similar to published results of tracer experiments in macaques. Taking this correspondence as external validation of 3D-PLI enabled translation to the human brain, where a similarly complex fiber architecture within the sagittal stratum could be exemplified in a human hemisphere in our study. We thus argue in favor of a dedicated fiber microstructure within the sagittal stratum as a correlate of the additional fiber directions typically seen in in-vivo diffusion imaging studies.

Funder

horizon 2020 framework programme

national institutes of health

Universitätsklinikum Düsseldorf. Anstalt öffentlichen Rechts

Publisher

Springer Science and Business Media LLC

Subject

Histology,General Neuroscience,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3