Abstract
AbstractNeocortical pyramidal cells have three key classes of excitatory input: forward inputs from the previous cortical area (or thalamus); recurrent collateral synapses from nearby pyramidal cells; and backprojection inputs from the following cortical area. The neocortex performs three major types of computation: (1) unsupervised learning of new categories, by allocating neurons to respond to combinations of inputs from the preceding cortical stage, which can be performed using competitive learning; (2) short-term memory, which can be performed by an attractor network using the recurrent collaterals; and (3) recall of what has been learned by top–down backprojections from the following cortical area. There is only one type of excitatory neuron involved, pyramidal cells, with these three types of input. It is proposed, and tested by simulations of a neuronal network model, that pyramidal cells can implement all three types of learning simultaneously, and can subsequently usefully categorise the forward inputs; keep them active in short-term memory; and later recall the representations using the backprojection input. This provides a new approach to understanding how one type of excitatory neuron in the neocortex can implement these three major types of computation, and provides a conceptual advance in understanding how the cerebral neocortex may work.
Publisher
Springer Science and Business Media LLC
Subject
Histology,General Neuroscience,Anatomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献