Resting-state functional connectivity in an auditory network differs between aspiring professional and amateur musicians and correlates with performance

Author:

Papadaki Eleftheria,Koustakas Theodoros,Werner André,Lindenberger Ulman,Kühn Simone,Wenger Elisabeth

Abstract

AbstractAuditory experience-dependent plasticity is often studied in the domain of musical expertise. Available evidence suggests that years of musical practice are associated with structural and functional changes in auditory cortex and related brain regions. Resting-state functional magnetic resonance imaging (MRI) can be used to investigate neural correlates of musical training and expertise beyond specific task influences. Here, we compared two groups of musicians with varying expertise: 24 aspiring professional musicians preparing for their entrance exam at Universities of Arts versus 17 amateur musicians without any such aspirations but who also performed music on a regular basis. We used an interval recognition task to define task-relevant brain regions and computed functional connectivity and graph-theoretical measures in this network on separately acquired resting-state data. Aspiring professionals performed significantly better on all behavioral indicators including interval recognition and also showed significantly greater network strength and global efficiency than amateur musicians. Critically, both average network strength and global efficiency were correlated with interval recognition task performance assessed in the scanner, and with an additional measure of interval identification ability. These findings demonstrate that task-informed resting-state fMRI can capture connectivity differences that correspond to expertise-related differences in behavior.

Funder

Max Planck Institute for Human Development

Publisher

Springer Science and Business Media LLC

Subject

Histology,General Neuroscience,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3