Converting sounds to meaning with ventral semantic language networks: integration of interdisciplinary data on brain connectivity, direct electrical stimulation and clinical disconnection syndromes

Author:

Sefcikova ViktoriaORCID,Sporrer Juliana K.,Juvekar ParikshitORCID,Golby Alexandra,Samandouras GeorgeORCID

Abstract

AbstractNumerous traditional linguistic theories propose that semantic language pathways convert sounds to meaningful concepts, generating interpretations ranging from simple object descriptions to communicating complex, analytical thinking. Although the dual-stream model of Hickok and Poeppel is widely employed, proposing a dorsal stream, mapping speech sounds to articulatory/phonological networks, and a ventral stream, mapping speech sounds to semantic representations, other language models have been proposed. Indeed, despite seemingly congruent models of semantic language pathways, research outputs from varied specialisms contain only partially congruent data, secondary to the diversity of applied disciplines, ranging from fibre dissection, tract tracing, and functional neuroimaging to neuropsychiatry, stroke neurology, and intraoperative direct electrical stimulation. The current review presents a comprehensive, interdisciplinary synthesis of the ventral, semantic connectivity pathways consisting of the uncinate, middle longitudinal, inferior longitudinal, and inferior fronto-occipital fasciculi, with special reference to areas of controversies or consensus. This is achieved by describing, for each tract, historical concept evolution, terminations, lateralisation, and segmentation models. Clinical implications are presented in three forms: (a) functional considerations derived from normal subject investigations, (b) outputs of direct electrical stimulation during awake brain surgery, and (c) results of disconnection syndromes following disease-related lesioning. The current review unifies interpretation of related specialisms and serves as a framework/thinking model for additional research on language data acquisition and integration.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Histology,General Neuroscience,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3