Author:
Mantanona Craig P.,Alsiö Johan,Elson Joanna L.,Fisher Beth M.,Dalley Jeffrey W.,Bussey Timothy,Pienaar Ilse S.
Abstract
AbstractTransgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containingcholine acetyltransferase(ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiplevesicular acetylcholine transporter(VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouseVAChTcopy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic–pituitary–adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouseVAChTgene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats,VAChToverexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.
Funder
The Rosetrees Trust
Northumbria University PhD award
Publisher
Springer Science and Business Media LLC
Subject
Histology,General Neuroscience,Anatomy