Nonlinear Vibration and Stability of a Dielectric Elastomer Balloon Based on a Strain-Stiffening Model

Author:

Alibakhshi Amin,Chen Weiqiu,Destrade MichelORCID

Abstract

AbstractLimiting chain extensibility is a characteristic that plays a vital role in the stretching of highly elastic materials. The Gent model has been widely used to capture this behaviour, as it performs very well in fitting stress-stretch data in simple tension, and involves two material parameters only. Recently, Anssari-Benam and Bucchi (Int. J. Non. Linear. Mech. 128:103626, 2021) introduced a different form of generalised neo-Hookean model, focusing on the molecular structure of elastomers, and showed that their model encompasses all ranges of deformations, performing better than the Gent model in many respects, also with only two parameters. Here we investigate the nonlinear vibration and stability of a dielectric elastomer balloon modelled by that strain energy function. We derive the deformation field in spherical coordinates and the governing equations by the Euler-Lagrange method, assuming that the balloon retains its spherical symmetry as it inflates. We consider in turn that the balloon is under two types of voltages, a pure DC voltage and an AC voltage superimposed on a DC voltage. We analyse the dynamic response of the balloon and identify the influential parameters in the model. We find that the molecular structure of the material, as tracked by the number of segments in a single chain, can control the instability and the pull-in/snap-through critical voltage, as well as chaos and quasi-periodicity. The main result is that balloons made of materials exhibiting early strain-stiffening effects are more stable and less prone to generate chaotic nonlinear vibrations than when made of softer materials, such as those modelled by the neo-Hookean strain-energy density function.

Funder

Natural Science Foundation of Zhejiang Province

Innovative Research Group Project of the National Natural Science Foundation of China

Shenzhen Technical Project

National University Ireland, Galway

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3