On the Phase Space of Fourth-Order Fiber-Orientation Tensors

Author:

Bauer Julian Karl,Schneider Matti,Böhlke Thomas

Abstract

AbstractFiber-orientation tensors describe the relevant features of the fiber-orientation distribution compactly and are thus ubiquitous in injection-molding simulations and subsequent mechanical analyses. In engineering applications to date, the second-order fiber-orientation tensor is the basic quantity of interest, and the fourth-order fiber-orientation tensor is obtained via a closure approximation. Unfortunately, such a description limits the predictive capabilities of the modeling process significantly, because the wealth of possible fourth-order fiber-orientation tensors is not exploited by such closures, and the restriction to second-order fiber-orientation tensors implies artifacts. Closures based on the second-order fiber-orientation tensor face a fundamental problem – which fourth-order fiber-orientation tensors can be realized? In the literature, only necessary conditions for a fiber-orientation tensor to be connected to a fiber-orientation distribution are found. In this article, we show that the typically considered necessary conditions, positive semidefiniteness and a trace condition, are also sufficient for being a fourth-order fiber-orientation tensor in the physically relevant case of two and three spatial dimensions. Moreover, we show that these conditions are not sufficient in higher dimensions. The argument is based on convex duality and a celebrated theorem of D. Hilbert (1888) on the decomposability of positive and homogeneous polynomials of degree four. The result has numerous implications for modeling the flow and the resulting microstructures of fiber-reinforced composites, in particular for the effective elastic constants of such materials. Based on our findings, we show how to connect optimization problems on fourth-order fiber-orientation tensors to semi-definite programming. The proposed formulation permits to encode symmetries of the fiber-orientation tensor naturally. As an application, we look at the differences between orthotropic and general, i.e., triclinic, fiber-orientation tensors of fourth order in two and three spatial dimensions, revealing the severe limitations inherent to orthotropic closure approximations.

Funder

Deutsche Forschungsgemeinschaft

HORIZON EUROPE European Research Council

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3