The Anelastic Ericksen Problem: Universal Deformations and Universal Eigenstrains in Incompressible Nonlinear Anelasticity

Author:

Goodbrake Christian,Yavari ArashORCID,Goriely AlainORCID

Abstract

AbstractEricksen’s problem consists of determining all equilibrium deformations that can be sustained solely by the application of boundary tractions for an arbitrary incompressible isotropic hyperelastic material whose stress-free configuration is geometrically flat. We generalize this by first, using a geometric formulation of this problem to show that all the known universal solutions are symmetric with respect to Lie subgroups of the special Euclidean group. Second, we extend this problem to its anelastic version, where the stress-free configuration of the body is a Riemannian manifold. Physically, this situation corresponds to the case where nontrivial finite eigenstrains are present. We characterize explicitly the universal eigenstrains that share the symmetries present in the classical problem, and show that in the presence of eigenstrains, the six known classical families of universal solutions merge into three distinct anelastic families, distinguished by their particular symmetry group. Some generic solutions of these families correspond to well-known cases of anelastic eigenstrains. Additionally, we show that some of these families possess a branch of anomalous solutions, and demonstrate the unique features of these solutions and the equilibrium stress they generate.

Funder

Directorate for Engineering

Army Research Office

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Dependent Elastoplastic Stress of an Infinite Matrix around a Growing Poroelastic Inhomogeneity Inclusion;Journal of Engineering Mechanics;2024-03

2. Nonlinear anisotropic viscoelasticity;Journal of the Mechanics and Physics of Solids;2024-01

3. Polynomial inclusions: Definitions, applications, and open problems;Journal of the Mechanics and Physics of Solids;2023-12

4. Controllable Deformations of Unconstrained Ideal Nematic Elastomers;Journal of Elasticity;2023-10-18

5. Nonlinear eigenstrain analysis for compressible Blatz–Ko solids;International Journal of Non-Linear Mechanics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3