Abstract
AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type$W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$W(F)=μ2∥F∥2detF+f(detF); such an energy is rank-one convex if and only if the function$f$fis convex.
Funder
Romanian Ministry of Research and Innovation
Projekt DEAL
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference75 articles.
1. Aguiar, A.R.: Strong ellipticity conditions for orthotropic bodies in finite plane strain. J. Elast. 134(2), 219–234 (2019)
2. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2008)
3. Aubert, G.: Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elast. 39(1), 31–46 (1995)
4. Aubert, G., Tahraoui, R.: Sur la faible fermeture de certains ensembles de contraintes en elasticite non-lineaire plane. Arch. Ration. Mech. Anal. 97(1), 33–58 (1987)
5. Baker, M., Ericksen, J.L.: Inequalities restricting the form of the stress-deformation relation for isotropic elastic solids and Reiner-Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献