On the Question of the Sign of Size Effects in the Elastic Behavior of Foams

Author:

Kirchhof Stephan,Ams Alfons,Hütter Geralf

Abstract

AbstractDue to their good ratio of stiffness and strength to weight, foam materials find use in lightweight engineering. Though, in many applications like structural bending or tension, the scale separation between macroscopic structure and the foam’s mesostructure like cells size, is relatively weak and the mechanical properties of the foam appear to be size dependent. Positive as well as negative size effects have been observed for certain basic tests of foams, i.e., the material appears either to be more compliant or stiffer than would be expected from larger specimens. Performing tests with sufficiently small specimens is challenging as any disturbances from damage of cell walls during sample preparation or from loading devices must be avoided. Correspondingly, the number of respective data in literature is relatively low and the results are partly contradictory.In order to avoid the problems from sample preparation or bearings, the present study employs virtual tests with CT data of real medium-density ceramic foams. A number of samples of different size is “cut” from the resulting voxel data. Subsequently, the apparent elastic properties of each virtual sample are “measured” directly by a free vibrational analysis using finite cell method, thereby avoiding any disturbances from load application or bearings. The results exhibit a large scatter of the apparent moduli per sample size, but with a clear negative size effect in all investigated basic modes of deformation (bending, torsion, uniaxial). Finally, the results are compared qualitatively and quantitatively to available experimental data from literature, yielding common trends as well as open questions.

Funder

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromorphic FE2 simulation of plastic deformations of foam structures;International Journal of Mechanical Sciences;2024-11

2. A computational approach to identify the material parameters of the relaxed micromorphic model;Computer Methods in Applied Mechanics and Engineering;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3