Stable Möbius Bands from Isometrically Deformed Circular Helicoids

Author:

Chaurasia Vikash,Fried Eliot

Abstract

AbstractWe consider the problem of producing a ruled Möbius band by subjecting an unstretchable, homogeneous, isotropic, elastic material surface material surface in a circular helicoidal reference configuration to a deformation that is isometric and chirality preserving. We find that such a Möbius band is completely determined by the unit binormal of the Frenet frame of its midline, which must be a geodesic and must have uniform torsion inversely proportional to the pitch of the helicoidal reference configuration. Granted that the energy density of the material surface depends quadratically on the mean curvature of its deformed configuration, we show that the total energy stored in producing a ruled Möbius band as described reduces, in closed form and without approximation, to an integral over the midline of the Möbius band. We formulate and numerically solve a constrained variational problem for finding relative minima of the dimensionally reduced bending energy and construct corresponding stable Möbius bands. The only input parameter entering our variational problem is the number $\nu $ ν of turns in a helicoidal reference configuration. We only find solutions if $\nu $ ν exceeds a certain threshold, which we compute to machine precision. Above that threshold, an interplay between the operative constraints leads to a multiplicity of coexisting stable solutions with $n\ge 3$ n 3 half twists. For each $n\ge 3$ n 3 , we construct an energetically optimal Möbius band which exhibits $n$ n -fold rotational symmetry. All other energy minima yield Möbius bands which lack symmetry. To our knowledge, this study contains the first examples of stable Möbius bands produced by isometrically deforming reference configurations that are not flat.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3