A Variational Framework for the Thermomechanics of Gradient-Extended Dissipative Solids – with Applications to Diffusion, Damage and Plasticity

Author:

Teichtmeister S.ORCID,Keip M.-A.

Abstract

AbstractThe paper presents a versatile framework for solids which undergo nonisothermal processes with irreversibly changing microstructure at large strains. It outlines rate-type and incremental variational principles for the full thermomechanical coupling in gradient-extended dissipative materials. It is shown that these principles yield as Euler equations essentially the macro- and micro-balances as well as the energy equation. Starting point is the incorporation of the entropy and entropy rate as canonical arguments into constitutive energy and dissipation functions, which additionally depend on the gradient-extended mechanical state and its rate, respectively. By means of (generalized) Legendre transformations, extended variational principles with thermal as well as mechanical driving forces can be constructed. On the thermal side, a rigorous distinction between the quantity conjugate to the entropy and the quantity conjugate to the entropy rate is essential here. Formulations with mechanical driving forces are especially suitable when considering possibly temperature-dependent threshold mechanisms. With regard to variationally consistent incrementations, we suggest an update scheme which renders the exact form of the intrinsic dissipation and is highly suitable when considering adiabatic processes. It is shown that this proposed numerical algorithm has the structure of an operator split. To underline the broad applicability of the proposed framework, we set up three model problems as applications: Cahn-Hilliard diffusion coupled with temperature evolution, where we propose a new variational principle in terms of the species flux vector, as well as thermomechanics of gradient damage and gradient plasticity. In a numerical example we study the formation of a cross shear band.

Funder

Deutsche Forschungsgemeinschaft

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3