Tourism destination management using sentiment analysis and geo-location information: a deep learning approach

Author:

Paolanti MarinaORCID,Mancini Adriano,Frontoni Emanuele,Felicetti Andrea,Marinelli Luca,Marcheggiani Ernesto,Pierdicca Roberto

Abstract

AbstractSentiment analysis on social media such as Twitter is a challenging task given the data characteristics such as the length, spelling errors, abbreviations, and special characters. Social media sentiment analysis is also a fundamental issue with many applications. With particular regard of the tourism sector, where the characterization of fluxes is a vital issue, the sources of geotagged information have already proven to be promising for tourism-related geographic research. The paper introduces an approach to estimate the sentiment related to Cilento’s, a well known tourism venue in Southern Italy. A newly collected dataset of tweets related to tourism is at the base of our method. We aim at demonstrating and testing a deep learning social geodata framework to characterize spatial, temporal and demographic tourist flows across the vast of territory this rural touristic region and along its coasts. We have applied four specially trained Deep Neural Networks to identify and assess the sentiment, two word-level and two character-based, respectively. In contrast to many existing datasets, the actual sentiment carried by texts or hashtags is not automatically assessed in our approach. We manually annotated the whole set to get to a higher dataset quality in terms of accuracy, proving the effectiveness of our method. Moreover, the geographical coding labelling each information, allow for fitting the inferred sentiments with their geographical location, obtaining an even more nuanced content analysis of the semantic meaning.

Funder

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

Subject

Social Sciences (miscellaneous),General Computer Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3