Promoting sustainable tourism by recommending sequences of attractions with deep reinforcement learning

Author:

Dalla Vecchia AnnaORCID,Migliorini SaraORCID,Quintarelli ElisaORCID,Gambini MauroORCID,Belussi AlbertoORCID

Abstract

AbstractDeveloping Recommender Systems (RSs) is particularly interesting in the tourist domain, where one or more attractions have to be suggested to users based on preferences, contextual dimensions, and several other constraints. RSs usually rely on the availability of a vast amount of historical information about users’ past activities. However, this is not usually the case in the tourist domain, where acquiring complete and accurate information about the user’s behavior is complex, and providing personalized suggestions is frequently practically impossible. Moreover, even though most available Touristic RSs (T-RSs) are user-focused, the touristic domain also requires the development of systems that can promote a more sustainable form of tourism. The concept of sustainable tourism covers many aspects, from economic, social, and environmental issues to the attention to improving tourists’ experience and the needs of host communities. In this regard, one of the most important aspects is the prevention of overcrowded situations in attractions or locations (over-tourism). For this reason, this paper proposes a different kind of T-RS, which focuses more on the tourists’ impact on the destinations, trying to improve their experiences by offering better visit conditions. Moreover, instead of suggesting the next Point of Interest (PoI) to visit in a given situation, it provides a suggestion about a complete sequence of PoIs (tourist itinerary) that covers an entire day or vacation period. The proposed technique is based on the application of Deep Reinforcement Learning, where the tourist’s reward depends on the specific spatial and temporal context in which the itinerary has to be performed. The solution has been evaluated with a real-world dataset regarding the visits conducted by tourists in Verona (Italy) from 2014 to 2023 and compared with three baselines.

Funder

Università degli Studi di Verona

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3