On Error-Based Step Size Control for Discontinuous Galerkin Methods for Compressible Fluid Dynamics
-
Published:2023-05-22
Issue:
Volume:
Page:
-
ISSN:2096-6385
-
Container-title:Communications on Applied Mathematics and Computation
-
language:en
-
Short-container-title:Commun. Appl. Math. Comput.
Author:
Ranocha HendrikORCID, Winters Andrew R., Castro Hugo Guillermo, Dalcin Lisandro, Schlottke-Lakemper Michael, Gassner Gregor J., Parsani Matteo
Abstract
AbstractWe study a temporal step size control of explicit Runge-Kutta (RK) methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy (CFL) number. Our numerical examples show that the error-based step size control is easy to use, robust, and efficient, e.g., for (initial) transient periods, complex geometries, nonlinear shock capturing approaches, and schemes that use nonlinear entropy projections. We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases, the open source Julia packages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc.
Funder
Vetenskapsrådet King Abdullah University of Science and Technology Klaus Tschira Stiftung Deutsche Forschungsgemeinschaft Universität Hamburg
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Applied Mathematics
Reference99 articles.
1. Abhyankar, S., Brown, J., Constantinescu, E.M., Ghosh, D., Smith, B.F., Zhang, H.: PETSc/TS: A Modern Scalable ODE/DAE Solver Library. 1806.01437 (2018) 2. Al Jahdali, R., Boukharfane, R., Dalcin, L., Parsani, M.: Optimized explicit Runge-Kutta schemes for entropy stable discontinuous collocated methods applied to the Euler and Navier-Stokes equations. In: AIAA Scitech 2021 Forum, AIAA 2021-0633 (2021). https://doi.org/10.2514/6.2021-0633 3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.13, Argonne National Laboratory (2020) 4. Becker, T., Burovskiy, P., Nestorov, A.M., Palikareva, H., Reggiani, E., Gaydadjiev, G.: From exaflop to exaflow. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 404–409. European Design and Automation Association, Leuven, IEEE (2017) 5. Benkhaldoun, F., Sahmim, S., Seaid, M.: A two-dimensional finite volume morphodynamic model on unstructured triangular grids. Int. J. Numer. Methods Fluids 63(11), 1296–1327 (2010). https://doi.org/10.1002/fld.2129
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|