On Loss Functionals for Physics-Informed Neural Networks for Steady-State Convection-Dominated Convection-Diffusion Problems

Author:

Frerichs-Mihov Derk,Henning Linus,John VolkerORCID

Abstract

AbstractSolutions of convection-dominated convection-diffusion problems usually possess layers, which are regions where the solution has a steep gradient. It is well known that many classical numerical discretization techniques face difficulties when approximating the solution to these problems. In recent years, physics-informed neural networks (PINNs) for approximating the solution to (initial-)boundary value problems ((I)BVPs) received a lot of interest. This paper studies various loss functionals for PINNs that are especially designed for convection-dominated convection-diffusion problems and that are novel in the context of PINNs. They are numerically compared to the vanilla and an hp-variational loss functional from the literature based on two steady-state benchmark problems whose solutions possess different types of layers. We observe that the best novel loss functionals reduce the $$L^2(\varOmega )$$ L 2 ( Ω ) error by 17.3% for the first and 5.5% for the second problem compared to the methods from the literature.

Funder

Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V.

Publisher

Springer Science and Business Media LLC

Reference57 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org/ (2015)

2. Arzani, A., Cassel, K.W., D’Souza, R.M.: Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation. J. Comput. Phys. 473, 111768 (2023). https://doi.org/10.1016/j.jcp.2022.111768

3. Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R.: An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 200(47/48), 3395–3409 (2011). https://doi.org/10.1016/j.cma.2011.08.012

4. Barrenechea, G.R., John, V., Knobloch, P.: Finite element methods respecting the discrete maximum principle for convection-diffusion equations. SIAM Rev. 66, 3–88 (2024). https://doi.org/10.1137/22M1488934

5. Beck, A., Flad, D., Munz, C.-D.: Deep neural networks for data-driven LES closure models. J. Comput. Phys. 398, 108910 (2019). https://doi.org/10.1016/j.jcp.2019.108910

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3