Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Du, R.L., Li, C.P., Sun, Z.Z.: $$H^1$$-analysis of $$\text{ H3N3-2}_\sigma $$-based difference method for fractional hyperbolic equations. Comput. Appl. Math. 43, 69 (2024)
2. Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear. Sci. Numer. Simul. 106, 106096 (2022)
3. Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical methods for the Caputo-type fractional derivative with an exponential kernel. J. Appl. Anal. Comput. 13(1), 376–423 (2023)
4. Gohar, M., Li, C.P., Li, Z.Q.: Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterr. J. Math. 17(6), 194 (2020)
5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)