Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Applied Mathematics
Reference16 articles.
1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)
2. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993)
3. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)
4. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on $${\mathbb{R} }$$ and $${\mathbb{T} }$$. J. Amer. Math. Soc. 16(3), 705–749 (2003)
5. Himonas, A.A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differential Integral Equations 22, 201–224 (2009)