Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent

Author:

Whiting WesORCID,Wang Bao,Xin Jack

Abstract

AbstractWe prove, under mild conditions, the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model, both in batch gradient descent and stochastic gradient descent. We also discuss a Riemannian version of the Adam algorithm. We show numerical simulations of these algorithms on various benchmarks.

Funder

Directorate for Mathematical and Physical Sciences

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Applied Mathematics

Reference12 articles.

1. Bécigneul, G., Ganea, O.-E.: Riemannian adaptive optimization methods. arXiv:1810.00760 (2019)

2. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 58(9), 2217–2229 (2013)

3. De Sa, C., Gu, A., Ré, C., Sala, F.: Representation tradeoffs for hyperbolic embeddings. CoRR, arXiv:1804.03329 (2018)

4. Ganea, O.-E., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. CoRR, arXiv:1805.09112 (2018)

5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 (2014)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous Network Embedding Method Based on Hyperbolic Space;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3