Abstract
AbstractWe introduce a class of systems of Hamilton-Jacobi equations characterizing geodesic centroidal tessellations, i.e., tessellations of domains with respect to geodesic distances where generators and centroids coincide. Typical examples are given by geodesic centroidal Voronoi tessellations and geodesic centroidal power diagrams. An appropriate version of the Fast Marching method on unstructured grids allows computing the solution of the Hamilton-Jacobi system and, therefore, the associated tessellations. We propose various numerical examples to illustrate the features of the technique.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Applied Mathematics
Reference29 articles.
1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2074–2282 (2012)
2. Alla, A., Falcone, M., Saluzzi, L.: An efficient DP algorithm on a tree-structure for finite horizon optimal control problems. SIAM J. Sci. Comput. 41, A2384–A2406 (2019)
3. Aquilanti, L., Cacace, S., Camilli, F., De Maio, R.: A mean field games approach to cluster analysis. Appl. Math. Optim. 84(1), 299–323 (2021)
4. Arthur, D., Vassilvitskii, S.: k-means++: the Advantages of Careful Seeding. In: SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. SIAM, PA, United States (2007)
5. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)