1. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30 (2020). OpenReview.net
2. Balcan, M.-F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning. ICML’06, pp. 65–72. Association for Computing Machinery, Pittsburgh, Pennsylvania, USA (2006). https://doi.org/10.1145/1143844.1143853
3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)
4. Belongie, S., Fowlkes, C., Chung, F., Malik, J.: Spectral partitioning with indefinite kernels using the Nyström extension. In: Goos, G., Hartmanis, J., van Leeuwen, J., Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision, pp. 531–542. Springer, Berlin, Heidelberg (2002)
5. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional data. SIAM Rev. 58(2), 293–328 (2016). https://doi.org/10.1137/16M1070426