Adopting a Framework for Rapid Real-World Data Analyses in Safety Signal Assessment

Author:

Wang Lu,Golchin Negar,Klot Stephanie von,Salinas Claudia A.,Manlik Katrin,Patadia Vaishali,Miller Mary K.,Asubonteng Julius,McDermott Rachel,Barberio Julie,Gipson Geoffrey

Abstract

AbstractThe expanding availability of real-world data (RWD) has led to an increase in both the interest and possibilities for using this information in postmarketing safety analyses and signal management. While there is enormous potential value from the safety insights generated through RWD, the analysis preparation, execution, and communication required to reliably deliver the evidence can be time consuming. Since the safety signal assessment process is a regulated and timebound process, any supporting RWD analyses require a rapid turnaround of well-designed and informative results. To address this challenge, a TransCelerate BioPharma working group was formed and developed a framework to help teams responsible for safety signal assessment overcome the challenges of working with RWD rapidly to deliver analyses within regulatory timelines. Here, a previously performed safety assessment was evaluated within the context of the developed framework to illustrate how the framework may be adopted in practice.

Publisher

Springer Science and Business Media LLC

Reference16 articles.

1. Guideline on good pharmacovigilance practices (GVP) Module IX– Signal Management (Rev 1) [Internet]. 2017. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-ix-signal-management-rev-1_en.pdf

2. Patadia V, Manlik K, Gipson G, et al. Ther Innov Regul Sci. 2024. https://doi.org/10.1007/s43441-024-00682-x. Leveraging Real-World Data in Safety Signal Assessment.

3. Rapid Signal Assessment Using Real World Data Framework [Internet]. 2023. https://www.transceleratebiopharmainc.com/assets/rapid-signal-assessment-using-real-world-data-solutions/#rsa-rwd-framework

4. Chapman M, Mumtaz S, Rasmussen LV, Karwath A, Gkoutos GV, Gao C, Thayer D, Pacheco JA, Parkinson H, Richesson RI, Jefferson E, Denaxas S, Curcin V. Desiderata for the development of next-generation electronic health record phenotype libraries. GigaScience. 2021;10(9):giab059. https://doi.org/10.1093/gigascience/giab059.

5. ICH Multidisciplinary Guidelines [Internet]. https://www.ich.org/page/multidisciplinary-guidelines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3