Mitigating SUV uncertainties using total body PET imaging

Author:

Smith Charlotte L. C.ORCID,Zwezerijnen Gerben J. C.,den Hollander Marijke E.,Weijland Jolijn,Yaqub Maqsood,Boellaard Ronald

Abstract

Abstract Purpose Standardised uptake values (SUV) are commonly used to quantify 18F-FDG lesion uptake. However, SUVs may suffer from several uncertainties and errors. Long-axial field-of-view (LAFOV) PET/CT systems might enable image-based quality control (QC) by deriving 18F-FDG activity and weight from total body (TB) 18F-FDG PET images. In this study, we aimed to develop these image-based QC to reduce errors and mitigate SUV uncertainties. Methods Twenty-five out of 81 patient scans from a LAFOV PET/CT system were used to determine regression fits for deriving of image-derived activity and weight. Thereafter, the regression fits were applied to 56 independent 18F-FDG PET scans from the same scanner to determine if injected activity and weight could be obtained accurately from TB and half-body (HB) scans. Additionally, we studied the impact of image-based values on the precision of liver SUVmean and lesion SUVpeak. Finally, 20 scans were acquired from a short-axial field-of-view (SAFOV) PET/CT system to determine if the regression fits also applied to HB scans from a SAFOV system. Results Both TB and HB 18F-FDG activity and weight significantly predicted reported injected activity (r = 0.999; r = 0.984) and weight (r = 0.999; r = 0.987), respectively. After applying the regression fits, 18F-FDG activity and weight were accurately derived within 4.8% and 3.2% from TB scans and within 4.9% and 3.1% from HB, respectively. Image-derived values also mitigated liver and lesion SUV variability compared with reported values. Moreover, 18F-FDG activity and weight obtained from a SAFOV scanner were derived within 6.7% and 4.5%, respectively. Conclusion 18F-FDG activity and weight can be derived accurately from TB and HB scans, and image-derived values improved SUV precision and corrected for lesion SUV errors. Therefore, image-derived values should be included as QC to generate a more reliable and reproducible quantitative uptake measurement.

Funder

Siemens Healthineers

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3