A convolutional neural network for fully automated blood SUV determination to facilitate SUR computation in oncological FDG-PET

Author:

Nikulin PavelORCID,Hofheinz Frank,Maus Jens,Li Yimin,Bütof Rebecca,Lange Catharina,Furth Christian,Zschaeck Sebastian,Kreissl Michael C.,Kotzerke Jörg,van den Hoff Jörg

Abstract

Abstract Purpose The standardized uptake value (SUV) is widely used for quantitative evaluation in oncological FDG-PET but has well-known shortcomings as a measure of the tumor’s glucose consumption. The standard uptake ratio (SUR) of tumor SUV and arterial blood SUV (BSUV) possesses an increased prognostic value but requires image-based BSUV determination, typically in the aortic lumen. However, accurate manual ROI delineation requires care and imposes an additional workload, which makes the SUR approach less attractive for clinical routine. The goal of the present work was the development of a fully automated method for BSUV determination in whole-body PET/CT. Methods Automatic delineation of the aortic lumen was performed with a convolutional neural network (CNN), using the U-Net architecture. A total of 946 FDG PET/CT scans from several sites were used for network training (N = 366) and testing (N = 580). For all scans, the aortic lumen was manually delineated, avoiding areas affected by motion-induced attenuation artifacts or potential spillover from adjacent FDG-avid regions. Performance of the network was assessed using the fractional deviations of automatically and manually derived BSUVs in the test data. Results The trained U-Net yields BSUVs in close agreement with those obtained from manual delineation. Comparison of manually and automatically derived BSUVs shows excellent concordance: the mean relative BSUV difference was (mean ± SD) = (– 0.5 ± 2.2)% with a 95% confidence interval of [− 5.1,3.8]% and a total range of [− 10.0, 12.0]%. For four test cases, the derived ROIs were unusable (< 1 ml). Conclusion CNNs are capable of performing robust automatic image-based BSUV determination. Integrating automatic BSUV derivation into PET data processing workflows will significantly facilitate SUR computation without increasing the workload in the clinical setting.

Funder

Major Projects of Fujian Natural Science Foundation

Nature Science Foundation of China

Xiamen city science and technology project guidance

Bundesministerium für Bildung und Forschung

Berliner Krebsgesellschaft

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiology Nuclear Medicine and imaging,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3