Novel CYP11B-ligand [123/131I]IMAZA as promising theranostic tool for adrenocortical tumors: comprehensive preclinical characterization and first clinical experience

Author:

Heinze Britta,Schirbel Andreas,Nannen Lukas,Michelmann David,Hartrampf Philipp E.,Bluemel Christina,Schneider Magdalena,Herrmann Ken,Haenscheid Heribert,Fassnacht Martin,Buck Andreas K.,Hahner Stefanie

Abstract

Abstract Purpose Adrenal tumors represent a diagnostic and therapeutic challenge. Promising results have been obtained through targeting the cytochrome P450 enzymes CYP11B1 and CYP11B2 for molecular imaging, and [123/131I]iodometomidate ([123/131I]IMTO) has even been successfully introduced as a theranostic agent. As this radiopharmaceutical shows rapid metabolic inactivation, we aimed at developing new improved tracers. Methods Several IMTO derivatives were newly designed by replacing the unstable methyl ester by different carboxylic esters or amides. The inhibition of aldosterone and cortisol synthesis was tested in different adrenocortical cell lines. The corresponding radiolabeled compounds were assessed regarding their stability, in vitro cell uptake, in vivo biodistribution in mice, and their binding specificity to cryosections of human adrenocortical and non-adrenocortical tissue. Furthermore, a first investigation was performed in patients with known metastatic adrenal cancer using both [123I]IMTO and the most promising compound (R)-1-[1-(4-[123I]iodophenyl)ethyl]-1H-imidazole-5-carboxylic acid azetidinylamide ([123I]IMAZA) for scintigraphy. Subsequently, a first endoradiotherapy with [131I]IMAZA in one of these patients was performed. Results We identified three analogues to IMTO with high-affinity binding to the target enzymes and comparable or higher metabolic stability and very high and specific accumulation in adrenocortical cells in vitro and in vivo. Labeled IMAZA exhibited superior pharmacokinetic and imaging properties compared to IMTO in mice and 3 patients, too. An endoradiotherapy with [131I]IMAZA induced a 21-month progression-free interval in a patient with rapidly progressing ACC prior this therapy. Conclusion We developed the new radiopharmaceutical [123/131I]IMAZA with superior properties compared to the reference compound IMTO and promising first experiences in humans.

Funder

Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg

Deutsche Forschungsgemeinschaft

Else Kröner-Fresenius-Stiftung

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3