Prediction of therapy response of breast cancer patients with machine learning based on clinical data and imaging data derived from breast [18F]FDG-PET/MRI

Author:

Jannusch Kai,Dietzel Frederic,Bruckmann Nils Martin,Morawitz Janna,Boschheidgen Matthias,Minko Peter,Bittner Ann-Kathrin,Mohrmann Svjetlana,Quick Harald H.,Herrmann Ken,Umutlu Lale,Antoch Gerald,Rubbert ChristianORCID,Kirchner Julian,Caspers Julian

Abstract

Abstract Purpose To evaluate if a machine learning prediction model based on clinical and easily assessable imaging features derived from baseline breast [18F]FDG-PET/MRI staging can predict pathologic complete response (pCR) in patients with newly diagnosed breast cancer prior to neoadjuvant system therapy (NAST). Methods Altogether 143 women with newly diagnosed breast cancer (54 ± 12 years) were retrospectively enrolled. All women underwent a breast [18F]FDG-PET/MRI, a histopathological workup of their breast cancer lesions and evaluation of clinical data. Fifty-six features derived from positron emission tomography (PET), magnetic resonance imaging (MRI), sociodemographic / anthropometric, histopathologic as well as clinical data were generated and used as input for an extreme Gradient Boosting model (XGBoost) to predict pCR. The model was evaluated in a five-fold nested-cross-validation incorporating independent hyper-parameter tuning within the inner loops to reduce the risk of overoptimistic estimations. Diagnostic model-performance was assessed by determining the area under the curve of the receiver operating characteristics curve (ROC-AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Furthermore, feature importances of the XGBoost model were evaluated to assess which features contributed most to distinguish between pCR and non-pCR. Results Nested-cross-validation yielded a mean ROC-AUC of 80.4 ± 6.0% for prediction of pCR. Mean sensitivity, specificity, PPV, and NPV of 54.5 ± 21.3%, 83.6 ± 4.2%, 63.6 ± 8.5%, and 77.6 ± 8.1% could be achieved. Histopathological data were the most important features for classification of the XGBoost model followed by PET, MRI, and sociodemographic/anthropometric features. Conclusion The evaluated multi-source XGBoost model shows promising results for reliably predicting pathological complete response in breast cancer patients prior to NAST. However, yielded performance is yet insufficient to be implemented in the clinical decision-making process.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Düsseldorf. Anstalt öffentlichen Rechts

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of big data technology and its application in cancer care;Computers in Biology and Medicine;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3