Non-invasive kinetic modelling approaches for quantitative analysis of brain PET studies

Author:

van der Weijden Chris W. J.,Mossel Pascalle,Bartels Anna L.,Dierckx Rudi A. J. O.,Luurtsema Gert,Lammertsma Adriaan A.,Willemsen Antoon T. M.,de Vries Erik F. J.ORCID

Abstract

AbstractPharmacokinetic modelling with arterial sampling is the gold standard for analysing dynamic PET data of the brain. However, the invasive character of arterial sampling prevents its widespread clinical application. Several methods have been developed to avoid arterial sampling, in particular reference region methods. Unfortunately, for some tracers or diseases, no suitable reference region can be defined. For these cases, other potentially non-invasive approaches have been proposed: (1) a population based input function (PBIF), (2) an image derived input function (IDIF), or (3) simultaneous estimation of the input function (SIME). This systematic review aims to assess the correspondence of these non-invasive methods with the gold standard. Studies comparing non-invasive pharmacokinetic modelling methods with the current gold standard methods using an input function derived from arterial blood samples were retrieved from PubMed/MEDLINE (until December 2021). Correlation measurements were extracted from the studies. The search yielded 30 studies that correlated outcome parameters (VT, DVR, or BPND for reversible tracers; Ki or CMRglu for irreversible tracers) from a potentially non-invasive method with those obtained from modelling using an arterial input function. Some studies provided similar results for PBIF, IDIF, and SIME-based methods as for modelling with an arterial input function (R2 = 0.59–1.00, R2 = 0.71–1.00, R2 = 0.56–0.96, respectively), if the non-invasive input curve was calibrated with arterial blood samples. Even when the non-invasive input curve was calibrated with venous blood samples or when no calibration was applied, moderate to good correlations were reported, especially for the IDIF and SIME (R2 = 0.71–1.00 and R2 = 0.36–0.96, respectively). Overall, this systematic review illustrates that non-invasive methods to generate an input function are still in their infancy. Yet, IDIF and SIME performed well, not only with arterial blood calibration, but also with venous or no blood calibration, especially for some tracers without plasma metabolites, which would potentially make these methods better suited for clinical application. However, these methods should still be properly validated for each individual tracer and application before implementation.

Funder

Stichting MS Research

the Nederlandse organisatie voor gezondheidsonderzoek en zorginnovatie

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3