Abstract
Abstract
Purpose
Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents.
Methods
Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially.
Results
[89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates.
Conclusion
DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET.
Funder
H2020 Marie Skłodowska-Curie Actions
Swiss National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,General Medicine,Radiology Nuclear Medicine and imaging,General Medicine
Reference41 articles.
1. Singh S, Kumar NK, Dwiwedi P, Charan J, Kaur R, Sidhu P, et al. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2017;13:85–99.
2. Van Dongen GAMS, Huisman MC, Boellaard R, Hendrikse NH, Windhorst AD, Visser GWM, et al. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q J Nucl Med Mol Imaging. 2015;59:18–38.
3. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120:3787–851.
4. Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse HN, Vugts DJ, Zijlstra JM, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol. 2016;7:1–15.
5. Vugts DJ, Visser GW, van Dongen GA. 89Zr-PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals. Curr Top Med Chem. 2013;13:446–57.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献