Preclinical evaluation of [18F]FDG-PET as a biomarker of lymphoid tissue disease and inflammation in Zika virus infection

Author:

Victorio Carla Bianca Luena,Ong Joanne,Tham Jing Yang,Reolo Marie Jennifer,Novera Wisna,Msallam Rasha,Watanabe Satoru,Kalimuddin Shirin,Low Jenny G.,Vasudevan Subhash G.,Chacko Ann-MarieORCID

Abstract

Abstract Purpose Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. Methods [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. Results Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues—particularly the spleen—of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. Conclusion [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.

Funder

Singapore Health and Biomedical Sciences (HBMS) Industry Alignment Fund Pre-Positioning

National Research Foundation Singapore

Singapore National Medical Research Council (NMRC) Open Fund Young Individual Research Grant

Duke-NUS Khoo Collaborative Pilot Award

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3