Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks

Author:

Shen Biluo,Zhang Zhe,Shi Xiaojing,Cao Caiguang,Zhang Zeyu,Hu Zhenhua,Ji Nan,Tian JieORCID

Abstract

Abstract Purpose Surgery is the predominant treatment modality of human glioma but suffers difficulty on clearly identifying tumor boundaries in clinic. Conventional practice involves neurosurgeon’s visual evaluation and intraoperative histological examination of dissected tissues using frozen section, which is time-consuming and complex. The aim of this study was to develop fluorescent imaging coupled with artificial intelligence technique to quickly and accurately determine glioma in real-time during surgery. Methods Glioma patients (N = 23) were enrolled and injected with indocyanine green for fluorescence image–guided surgery. Tissue samples (N = 1874) were harvested from surgery of these patients, and the second near-infrared window (NIR-II, 1000–1700 nm) fluorescence images were obtained. Deep convolutional neural networks (CNNs) combined with NIR-II fluorescence imaging (named as FL-CNN) were explored to automatically provide pathological diagnosis of glioma in situ in real-time during patient surgery. The pathological examination results were used as the gold standard. Results The developed FL-CNN achieved the area under the curve (AUC) of 0.945. Comparing to neurosurgeons’ judgment, with the same level of specificity >80%, FL-CNN achieved a much higher sensitivity (93.8% versus 82.0%, P < 0.001) with zero time overhead. Further experiments demonstrated that FL-CNN corrected >70% of the errors made by neurosurgeons. FL-CNN was also able to rapidly predict grade and Ki-67 level (AUC 0.810 and 0.625) of tumor specimens intraoperatively. Conclusion Our study demonstrates that deep CNNs are better at capturing important information from fluorescence images than surgeons’ evaluation during patient surgery. FL-CNN is highly promising to provide pathological diagnosis intraoperatively and assist neurosurgeons to obtain maximum resection safely. Trial registration ChiCTR ChiCTR2000029402. Registered 29 January 2020, retrospectively registered

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Beijing Municipality

Capital characteristic clinical application project

Beijing Nova Program

Zhuhai High-level Health Personnel Team Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3