A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET

Author:

Xue Song,Guo Rui,Bohn Karl Peter,Matzke Jared,Viscione Marco,Alberts Ian,Meng Hongping,Sun Chenwei,Zhang Miao,Zhang Min,Sznitman Raphael,El Fakhri Georges,Rominger Axel,Li BiaoORCID,Shi Kuangyu

Abstract

Abstract Purpose A critical bottleneck for the credibility of artificial intelligence (AI) is replicating the results in the diversity of clinical practice. We aimed to develop an AI that can be independently applied to recover high-quality imaging from low-dose scans on different scanners and tracers. Methods Brain [18F]FDG PET imaging of 237 patients scanned with one scanner was used for the development of AI technology. The developed algorithm was then tested on [18F]FDG PET images of 45 patients scanned with three different scanners, [18F]FET PET images of 18 patients scanned with two different scanners, as well as [18F]Florbetapir images of 10 patients. A conditional generative adversarial network (GAN) was customized for cross-scanner and cross-tracer optimization. Three nuclear medicine physicians independently assessed the utility of the results in a clinical setting. Results The improvement achieved by AI recovery significantly correlated with the baseline image quality indicated by structural similarity index measurement (SSIM) (r = −0.71, p < 0.05) and normalized dose acquisition (r = −0.60, p < 0.05). Our cross-scanner and cross-tracer AI methodology showed utility based on both physical and clinical image assessment (p < 0.05). Conclusion The deep learning development for extensible application on unknown scanners and tracers may improve the trustworthiness and clinical acceptability of AI-based dose reduction.

Funder

swiss national science foundation

shanghai municipal key clinical specialty

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3