Automated quantification of PET/CT skeletal tumor burden in prostate cancer using artificial intelligence: The PET index

Author:

Lindgren Belal SarahORCID,Larsson Måns,Holm Jorun,Buch-Olsen Karen Middelbo,Sörensen Jens,Bjartell Anders,Edenbrandt Lars,Trägårdh Elin

Abstract

Abstract Purpose Consistent assessment of bone metastases is crucial for patient management and clinical trials in prostate cancer (PCa). We aimed to develop a fully automated convolutional neural network (CNN)-based model for calculating PET/CT skeletal tumor burden in patients with PCa. Methods A total of 168 patients from three centers were divided into training, validation, and test groups. Manual annotations of skeletal lesions in [18F]fluoride PET/CT scans were used to train a CNN. The AI model was evaluated in 26 patients and compared to segmentations by physicians and to a SUV 15 threshold. PET index representing the percentage of skeletal volume taken up by lesions was estimated. Results There was no case in which all readers agreed on prevalence of lesions that the AI model failed to detect. PET index by the AI model correlated moderately strong to physician PET index (mean r = 0.69). Threshold PET index correlated fairly with physician PET index (mean r = 0.49). The sensitivity for lesion detection was 65–76% for AI, 68–91% for physicians, and 44–51% for threshold depending on which physician was considered reference. Conclusion It was possible to develop an AI-based model for automated assessment of PET/CT skeletal tumor burden. The model’s performance was superior to using a threshold and provides fully automated calculation of whole-body skeletal tumor burden. It could be further developed to apply to different radiotracers. Objective scan evaluation is a first step toward developing a PET/CT imaging biomarker for PCa skeletal metastases.

Funder

Swedish government under the ALF agreement (

Wallenberg Centre for Molecular and Translational Medicine

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3