Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA

Author:

Backhaus P.ORCID,Gierse F.,Burg M. C.,Büther F.,Asmus I.,Dorten P.,Cufe J.,Roll W.,Neri D.,Cazzamalli S.,Millul J.,Mock J.,Galbiati A.,Zana A.,Schäfers K. P.,Hermann S.,Weckesser M.,Tio J.,Wagner S.,Breyholz H.-J.,Schäfers M.

Abstract

Abstract Purpose The fibroblast activation protein (FAP) is an emerging target for molecular imaging and therapy in cancer. OncoFAP is a novel small organic ligand for FAP with very high affinity. In this translational study, we establish [68Ga]Ga-OncoFAP-DOTAGA (68Ga-OncoFAP) radiolabeling, benchmark its properties in preclinical imaging, and evaluate its application in clinical PET scanning. Methods 68Ga-OncoFAP was synthesized in a cassette-based fully automated labeling module. Lipophilicity, affinity, and serum stability of 68Ga-OncoFAP were assessed by determining logD7.4, IC50 values, and radiochemical purity. 68Ga-OncoFAP tumor uptake and imaging properties were assessed in preclinical dynamic PET/MRI in murine subcutaneous tumor models. Finally, biodistribution and uptake in a variety of tumor types were analyzed in 12 patients based on individual clinical indications that received 163 ± 50 MBq 68Ga-OncoFAP combined with PET/CT and PET/MRI. Results 68Ga-OncoFAP radiosynthesis was accomplished with high radiochemical yields. Affinity for FAP, lipophilicity, and stability of 68Ga-OncoFAP measured are ideally suited for PET imaging. PET and gamma counting–based biodistribution demonstrated beneficial tracer kinetics and high uptake in murine FAP-expressing tumor models with high tumor-to-blood ratios of 8.6 ± 5.1 at 1 h and 38.1 ± 33.1 at 3 h p.i. Clinical 68Ga-OncoFAP-PET/CT and PET/MRI demonstrated favorable biodistribution and kinetics with high and reliable uptake in primary cancers (SUVmax 12.3 ± 2.3), lymph nodes (SUVmax 9.7 ± 8.3), and distant metastases (SUVmax up to 20.0). Conclusion Favorable radiochemical properties, rapid clearance from organs and soft tissues, and intense tumor uptake validate 68Ga-OncoFAP as a powerful alternative to currently available FAP tracers.

Funder

Universitätsklinikum Münster

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3